深入理解java虚拟机第三版读书笔记05

深入理解java虚拟机第三版读书笔记04

HotSpot的算法细节实现

根节点枚举

如何高效的找出所有GC Roots?

迄今为止,所有收集器在根节点枚举这一步骤时都是必须暂停用户线程的,枚举时必须在一个保障一致性的快照中才能进行。

目前主流Java虚拟机使用的都是准确式垃圾收集,在HotSpot的解决方案里,是使用一组称为OopMap的数据结构来获取那些地方存放着对象引用,一旦类加载动作完成的时候,HotSpot就会把对象内什么偏移量上是什么类型的数据计算出来,在即时编译过程中,也会在特定的位置记录下栈里和寄存器里哪些位置是引用。这样收集器在扫描时就可以直接得知这些信息了,并不需要真正一个不漏地从方法区等GC Roots开始查找。

安全点

如果导致引用关系变化,或者说导致OopMap内容变化的指令非常多,为每一条指令都生成对应的OopMap,那将会需要大量的额外存储空间。

实际上HotSpot也的确没有为每条指令都生成OopMap,只是在“特定的位置”记录了这些信息,这些位置被称为安全点。只有用户程序执行到达安全点才能停下来进行垃圾收集。

对于安全点,另外一个需要考虑的问题是,如何在垃圾收集发生时让所有线程(这里其实不包括执行JNI调用的线程)都跑到最近的安全点,然后停顿下来。有两种方法:

  • 抢先式中断
    抢先式中断不需要线程的执行代码主动去配合,在垃圾收集发生时,系统首先把所有用户线程全部中断,如果发现有用户线程中断的地方不在安全点上,就恢复这条线程执行,让它一会再重新中断,直到跑到安全点上。 现在几乎没有虚拟机实现采用抢先式中断来暂停线程响应GC事件。
  • 主动式中断
    当垃圾收集需要中断线程的时候,不直接对线程操作,仅仅简单地设置一个标志位,各个线程执行过程时会不停地主动去轮询这个标志,一旦发现中断标志为真时就自己在最近的安全点上主动中断挂起。 轮询标志的地方和安全点是重合的,另外还要加上所有创建对象和其他需要在Java堆上分配内存的地方,这是为了检查是否即将要发生垃圾收集,避免没有足够内存分配新对象。

由于轮询操作在代码中会频繁出现,这要求它必须足够高效。HotSpot使用内存保护陷阱的方式,把轮询操作精简至只有一条汇编指令的程度。下面代码中的test指令就是HotSpot生成的轮询指令,当需要暂停用户线程时,虚拟机把0x160100的内存页设置为不可读,那线程执行到test指令时就会产生一个自陷异常信号,然后在预先注册的异常处理器中挂起线程实现等待,这样仅通过一条汇编指令便完成安全点轮询和触发线程中断了。

0x01b6d627: call   0x01b2b210          ; OopMap{[60]=Oop off=460}
                                       ; *invokeinterface size
                                       ; - Client1::main@113 (line 23)
                                       ;   {virtual_call}
0x01b6d62c: nop                        ; OopMap{[60]=Oop off=461}
                                       ; *if_icmplt
                                       ; - Client1::main@118 (line 23)
0x01b6d62d: test   %eax,0x160100       ;   {poll}
0x01b6d633: mov    0x50(%esp),%esi
0x01b6d637: cmp    %eax,%esi

安全区域

如果程序没有分配处理器时间,典型的场景便是用户线程处于Sleep状态或者Blocked状态,这时候线程无法响应虚拟机的中断请求,不能再走到安全的地方去中断挂起自己。此时必须引入安全区域来解决。

安全区域是指能够确保在某一段代码片段之中,引用关系不会发生变化,因此,在这个区域中任意地方开始垃圾收集都是安全的。我们也可以把安全区域看作被扩展拉伸了的安全点。

当用户线程执行到安全区域里面的代码时,首先会标识自己已经进入了安全区域,那样当这段时间里虚拟机要发起垃圾收集时就不必去管这些已声明自己在安全区域内的线程了。当线程要离开安全区域时,它要检查虚拟机是否已经完成了根节点枚举(或者垃圾收集过程中其他需要暂停用户线程的阶段),如果完成了,那线程就当作没事发生过,继续执行;否则它就必须一直等待,直到收到可以离开安全区域的信号为止。 

记忆集与卡表

为解决对象跨代引用所带来的问题,垃圾收集器在新生代中建立了名为记忆集(Remembered Set)的数据结构,用以避免把整个老年代加进GC Roots扫描范围。事实上并不只是新生代、老年代之间才有跨代引用的问题,所有涉及部分区域收集(Partial GC)行为的垃圾收集器,典型的如G1、ZGC和Shenandoah收集器,都会面临相同的问题。

记忆集是一种用于记录从非收集区域指向收集区域的指针集合的抽象数据结构。如果我们不考虑效率和成本的话,最简单的实现可以用非收集区域中所有含跨代引用的对象数组来实现这个数据结构:

Class RememberedSet {
    Object[] set[OBJECT_INTERGENERATIONAL_REFERENCE_SIZE];
}

这种记录全部含跨代引用对象的实现方案,无论是空间占用还是维护成本都相当高昂。而在垃圾收集的场景中,收集器只需要通过记忆集判断出某一块非收集区域是否存在有指向了收集区域的指针就可以了,并不需要了解这些跨代指针的全部细节。那设计者在实现记忆集的时候,便可以选择更为粗犷的记录粒度来节省记忆集的存储和维护成本,下面是一些可供选择的记录精度:

  • 字长精度:每个记录精确到一个机器字长(就是处理器的寻址位数,如常见的32位或64位,这个精度决定了机器访问物理内存地址的指针长度),该字包含跨代指针。
  • 对象精度:每个记录精确到一个对象,该对象里有字段含有跨代指针。
  • 卡精度:每个记录精确到一块内存区域,该区域内有对象含有跨代指针。

其中,第三种“卡精度”所指的是用一种称为“卡表”(Card Table)的方式去实现记忆集,这也是目前最常用的一种记忆集实现形式

卡表最简单的形式可以只是一个字节数组,而HotSpot虚拟机确实也是这样做的。以下这行代码是HotSpot默认的卡表标记逻辑:

CARD_TABLE [this address >> 9] = 0;

字节数组CARD_TABLE的 每一个元素都对应着其标识的内存区域中一块特定大小的内存块,这个内存块被称作“卡页”。 一般来说,卡页大小都是以2的N次幂的字节数,通过上面代码可以看出HotSpot中使用的卡页是2的9次幂,即512字节。

一个卡页的内存中通常包含不止一个对象, 只要卡页内有一个(或更多)对象的字段存在着跨代指针,那就将对应卡表的数组元素的值标识为1,称为这个元素变脏,没有则标识为0。 在垃圾收集发生时,只要筛选出卡表中变脏的元素,就能轻易得出哪些卡页内存块中包含跨代指针,把它们加入GC Roots中一并扫描。

写屏障

卡表元素何时变脏、谁来把它们变脏?

卡表元素何时变脏的答案是很明确的——有其他分代区域中对象引用了本区域对象时,其对应的卡表元素就应该变脏,变脏时间点原则上应该发生在引用类型字段赋值的那一刻。但问题是如何变脏,即如何在对象赋值的那一刻去更新维护卡表呢?假如是解释执行的字节码,那相对好处理,虚拟机负责每条字节码指令的执行,有充分的介入空间;但在编译执行的场景中呢?经过即时编译后的代码已经是纯粹的机器指令流了,这就必须找到一个在机器码层面的手段,把维护卡表的动作放到每一个赋值操作之中。

写屏障可以看作在虚拟机层面对“引用类型字段赋值”这个动作的AOP切面,在引用对象赋值时会产生一个环形通知,供程序执行额外的动作,也就是说赋值的前后都在写屏障的覆盖范畴内。在赋值前的部分的写屏障叫作写前屏障,在赋值后的则叫作写后屏障。HotSpot虚拟机的许多收集器中都有使用到写屏障,但直至G1收集器出现之前,其他收集器都只用到了写后屏障。

下面这段代码是一段更新卡表状态的简化逻辑:

void oop_field_store(oop* field, oop new_value) {
    // 引用字段赋值操作
    *field = new_value;
    // 写后屏障,在这里完成卡表状态更新
    post_write_barrier(field, new_value);
}

应用写屏障后,虚拟机就会为所有赋值操作生成相应的指令,一旦收集器在写屏障中增加了更新卡表操作,无论更新的是不是老年代对新生代对象的引用,每次只要对引用进行更新,就会产生额外的开销,不过开销较小。

卡表在高并发场景下还面临着“伪共享”问题,现代中央处理器的缓存系统中是以缓存行(Cache Line)为单位存储的,当多线程修改互相独立的变量时,如果这些变量恰好共享同一个缓存行,就会彼此影响(写回、无效化或者同步)而导致性能降低。

一种简单的解决方案是不采用无条件的写屏障,而是先检查卡表标记,只有当该卡表元素未被标记过时才将其标记为变脏。

在JDK 7之后,HotSpot虚拟机增加了一个新的参数-XX:+UseCondCardMark,用来决定是否开启卡表更新的条件判断。开启会增加一次额外判断的开销,但能够避免伪共享问题,两者各有性能损耗,是否打开要根据应用实际运行情况来进行测试权衡。

并发的可达性分析

可达性分析算法理论上要求全过程都基于一个能保障一致性的快照中才能够进行分析,这意味着必须全程冻结用户线程的运行。

如果过程前后不一致可能出现两种后果:一种是把原本消亡的对象错误标记为存活,这其实是可以容忍的,只不过产生了一点逃过本次收集的浮动垃圾而已,下次收集清理掉就好。另一种是把原本存活的对象错误标记为已消亡,这就是非常致命的后果了。

我们引入三色标记作为工具来辅助推导,把遍历对象图过程中遇到的对象,按照“是否访问过”这个条件标记成以下三种颜色:
+ 白色:表示对象尚未被垃圾收集器访问过。显然在可达性分析刚刚开始的阶段,所有的对象都是白色的,若在分析结束的阶段,仍然是白色的对象,即代表不可达。
+ 黑色:表示对象已经被垃圾收集器访问过,且这个对象的所有引用都已经扫描过。黑色的对象代表已经扫描过,它是安全存活的,如果有其他对象引用指向了黑色对象,无须重新扫描一遍。黑色对象不可能直接(不经过灰色对象)指向某个白色对象。
+ 灰色:表示对象已经被垃圾收集器访问过,但这个对象上至少存在一个引用还没有被扫描过。

可能发生误清理的情况

当且仅当以下两个条件同时满足时,会产生“对象消失”的问题,即原本应该是黑色的对象被误标为白色:
+ 赋值器插入了一条或多条从黑色对象到白色对象的新引用;
+ 赋值器删除了全部从灰色对象到该白色对象的直接或间接引用。

要解决这个问题,仅需破坏其中任一条件,由此分别产生了两种解决方案:增量更新和原始快照。

增量更新:当黑色对象插入新的指向白色对象的引用关系时,就将这个新插入的引用记录下来,等并发扫描结束之后,再将这些记录过的引用关系中的黑色对象为根,重新扫描一次。这可以简化理解为,黑色对象一旦新插入了指向白色对象的引用之后,它就变回灰色对象了。

原始快照:当灰色对象要删除指向白色对象的引用关系时,就将这个要删除的引用记录下来,在并发扫描结束之后,再将这些记录过的引用关系中的灰色对象为根,重新扫描一次。这也可以简化理解为,无论引用关系删除与否,都会按照刚刚开始扫描那一刻的对象图快照来进行搜索。

在HotSpot虚拟机中,增量更新和原始快照这两种解决方案都有实际应用,譬如,CMS是基于增量更新来做并发标记的,G1、Shenandoah则是用原始快照来实现。

经典垃圾收集器

HotPots的垃圾收集器

这里展示了七种作用于不同分代的收集器,如果两个收集器之间存在连线,就说明它们可以搭配使用。重点分析CMS和G1这两款相对复杂而又广泛使用的收集器。

JAVA9取消了对Serial+CMS、ParNew+Serial Old的支持。

Serail收集器

-XX:+UseSerialGC=Serial+SerialOld

Serial收集器是最基础、历史最悠久的收集器。这是一个单线程工作的收集器,它进行垃圾收集时,不仅只会使用一个处理器或一条收集线程去完成垃圾收集工作,而且必须暂停其他所有工作线程,直到它收集结束。

Serial/Serial Old收集器运行示意图

对于“Stop The World”,从JDK 1.3开始,一直到现在最新的JDK 13,HotSpot虚拟机开发团队为消除或者降低用户线程因垃圾收集而导致停顿的努力一直持续进行着,从Serial收集器到Parallel收集器,再到Concurrent Mark Sweep(CMS)和Garbage First(G1)收集器,最终至现在垃圾收集器的最前沿成果Shenandoah和ZGC等,我们看到了一个个越来越构思精巧,越来越优秀,也越来越复杂的垃圾收集器不断涌现,用户线程的停顿时间在持续缩短,但是仍然没有办法彻底消除。

迄今为止,它依然是HotSpot虚拟机运行在客户端模式下的默认新生代收集器,有着优于其他收集器的地方,那就是简单而高效。它是所有收集器里额外内存消耗最小的,对于单核处理器或处理器核心数较少的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效率。

ParNew收集器

-XX:+/-UseParNewGC

ParNew收集器实质上是Serial收集器的多线程并行版本,除了同时使用多条线程进行垃圾收集之外,其余的行为包括Serial收集器可用的所有控制参数(例如:-XX:SurvivorRatio、-XX:PretenureSizeThreshold、-XX:HandlePromotionFailure等)、收集算法、Stop The World、对象分配规则、回收策略等都与Serial收集器完全一致

ParNew/Serial Old收集器运行示意图

ParNew收集器除了支持多线程并行收集之外,其他与Serial收集器相比并没有太多创新之处,但它却是不少运行在服务端模式下的HotSpot虚拟机,尤其是JDK 7之前的遗留系统中首选的新生代收集器,其中有一个与功能、性能无关但其实很重要的原因是:除了Serial收集器外,目前只有它能与CMS收集器配合工作。

随着更先进的G1收集器带着CMS继承者和替代者的光环登场,从JDK 9开始,ParNew和CMS从此只能互相搭配使用,再也没有其他收集器能够和它们配合了,也可以理解为从此以后,ParNew合并入CMS,成为它专门处理新生代的组成部分。

可以使用-XX:ParallelGCThreads参数来限制垃圾收集的线程数。

Parallel Scavenge收集器

-XX:+UseParallelGC -XX:+UseParallelOldGC

Parallel Scavenge收集器也是一款新生代收集器,它同样是基于标记-复制算法实现的收集器,也是能够并行收集的多线程收集器。

Parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标则是达到一个可控制的吞吐量(Throughput)。所谓吞吐量就是处理器用于运行用户代码的时间与处理器总消耗时间的比值。

Parallel Scavenge收集器提供了两个参数用于精确控制吞吐量,分别是控制最大垃圾收集停顿时间的-XX:MaxGCPauseMillis参数以及直接设置吞吐量大小的-XX:GCTimeRatio参数。

-XX:GCTimeRatio参数的值则应当是一个大于0小于100的整数,也就是垃圾收集时间占总时间的比率,相当于吞吐量的倒数。譬如把此参数设置为19,那允许的最大垃圾收集时间就占总时间的5%(即1/(1+19)),默认值为99,即允许最大1%(即1/(1+99))的垃圾收集时间。

参数-XX:+UseAdaptiveSizePolicy:当这个参数被激活之后,就不需要人工指定新生代的大小(-Xmn)、Eden与Survivor区的比例(-XX:SurvivorRatio)、晋升老年代对象大小(-XX:PretenureSizeThreshold)等细节参数了,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或者最大的吞吐量。这种调节方式称为垃圾收集的自适应的调节策略。

Serial Old收集器

Serial Old是Serial收集器的老年代版本,它同样是一个单线程收集器,使用标记-整理算法。

Serial/Serial Old收集器运行示意图

这个收集器的主要意义也是供客户端模式下的HotSpot虚拟机使用。如果在服务端模式下,它也可能有两种用途:
+ 在JDK 5以及之前的版本中与Parallel Scavenge收集器搭配使用
+ 作为CMS收集器发生失败时的后备预案,在并发收集发生Concurrent Mode Failure时使用。

Parallel Old收集器

Parallel Old是Parallel Scavenge收集器的老年代版本,支持多线程并发收集,基于标记-整理算法实现。这个收集器是直到JDK 6时才开始提供的,配合Parallel Scavenge有着良好的“吞吐量优先”的表现。

CMS收集器

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用集中在互联网网站或者基于浏览器的B/S系统的服务端上,这类应用通常都会较为关注服务的响应速度,希望系统停顿时间尽可能短,以给用户带来良好的交互体验。CMS收集器就非常符合这类应用的需求。

CMS收集器是基于标记-清除算法实现的,它的运作过程相对于前面几种收集器来说要更复杂一些,整个过程分为四个步骤,包括:
1. 初始标记(CMS initial mark)
2. 并发标记(CMS concurrent mark)
3. 重新标记(CMS remark)
4. 并发清除(CMS concurrent sweep)

其中初始标记、重新标记这两个步骤仍然需要“Stop The World”。初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快;并发标记阶段就是从GC Roots的直接关联对象开始遍历整个对象图的过程,这个过程耗时较长但是不需要停顿用户线程,可以与垃圾收集线程一起并发运行;而重新标记阶段则是为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间通常会比初始标记阶段稍长一些,但也远比并发标记阶段的时间短;最后是并发清除阶段,清理删除掉标记阶段判断的已经死亡的对象,由于不需要移动存活对象,所以这个阶段也是可以与用户线程同时并发的。

由于在整个过程中耗时最长的并发标记和并发清除阶段中,垃圾收集器线程都可以与用户线程一起工作,所以从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。

深入理解java虚拟机第三版读书笔记05

CMS收集器的缺点:

1) CMS收集器对处理器资源非常敏感。CMS默认启动的回收线程数是(处理器核心数量+3)/4,也就是说,如果处理器核心数在四个或以上,并发回收时垃圾收集线程只占用不超过25%的处理器运算资源,并且会随着处理器核心数量的增加而下降。但是当处理器核心数量不足四个时,CMS对用户程序的影响就可能变得很大。
为了缓解这种情况,虚拟机提供了一种称为“增量式并发收集器”(Incremental Concurrent Mark Sweep/i-CMS)的CMS收集器变种,所做的事情和以前单核处理器年代PC机操作系统靠抢占式多任务来模拟多核并行多任务的思想一样,是在并发标记、清理的时候让收集器线程、用户线程交替运行,尽量减少垃圾收集线程的独占资源的时间,这样整个垃圾收集的过程会更长,但对用户程序的影响就会显得较少一些,直观感受是速度变慢的时间更多了,但速度下降幅度就没有那么明显。实践证明增量式的CMS收集器效果很一般,从 JDK 7开始,i-CMS模式已经被声明为“deprecated”,即已过时不再提倡用户使用,到JDK 9发布后i-CMS模式被完全废弃。

2) CMS收集器无法处理“浮动垃圾”,有可能出现“Concurrent Mode Failure”失败进而导致另一次完全“Stop The World”的Full GC的产生。在CMS的并发标记和并发清理阶段,用户线程是还在继续运行的,程序在运行自然就还会伴随有新的垃圾对象不断产生,但这一部分垃圾对象是出现在标记过程结束以后,CMS无法在当次收集中处理掉它们,只好留待下一次垃圾收集时再清理掉。这一部分垃圾就称为“浮动垃圾”。同样也是由于在垃圾收集阶段用户线程还需要持续运行,那就还需要预留足够内存空间提供给用户线程使用,因此CMS收集器不能像其他收集器那样等待到老年代几乎完全被填满了再进行收集,必须预留一部分空间供并发收集时的程序运作使用。在JDK 5的默认设置下,CMS收集器当老年代使用了68%的空间后就会被激活,这是一个偏保守的设置,如果在实际应用中老年代增长并不是太快,可以适当调高参数-XX:CMSInitiatingOccupancyFraction的值来提高CMS的触发百分比,降低内存回收频率,获取更好的性能。到了JDK 6时,CMS收集器的启动阈值就已经默认提升至92%。但这又会更容易面临另一种风险:要是CMS运行期间预留的内存无法满足程序分配新对象的需要,就会出现一次“并发失败”(Concurrent Mode Failure),这时候虚拟机将不得不启动后备预案:冻结用户线程的执行,临时启用Serial Old收集器来重新进行老年代的垃圾收集,但这样停顿时间就很长了。所以参数-XX:CMSInitiatingOccupancyFraction设置得太高将会很容易导致大量的并发失败产生,性能反而降低,用户应在生产环境中根据实际应用情况来权衡设置。

3) CMS是一款基于“标记-清除”算法实现的收集器,收集结束时会有大量空间碎片产生,空间碎片过多时,将会给大对象分配带来很大麻烦。为了解决这个问题,CMS收集器提供了一个-XX:+UseCMSCompactAtFullCollection开关参数(默认是开启的,此参数从 JDK 9开始废弃),用于在CMS收集器不得不进行Full GC时开启内存碎片的合并整理过程,由于这个内存整理必须移动存活对象,(在Shenandoah和ZGC出现前)是无法并发的。这样空间碎片问题是解决了,但停顿时间又会变长,因此虚拟机设计者们还提供了另外一个参数-XX:CMSFullGCsBeforeCompaction(此参数从JDK 9开始废弃),这个参数的作用是要求CMS收集器在执行过若干次(数量由参数值决定)不整理空间的Full GC之后,下一次进入Full GC前会先进行碎片整理(默认值为0,表示每次进入Full GC时都进行碎片整理)。

Garbage First收集器(G1)

-XX:+UseG1GC

Garbage First(简称G1)开创了收集器面向局部收集的设计思路和基于Region的内存布局形式。

G1是一款主要面向服务端应用的垃圾收集器。最初期望可以替换掉CMS收集器。JDK 9发布之后代替Parallel Scavenge加Parallel Old成为服务端模式下的默认垃圾收集器,而CMS则沦落至被声明为不推荐使用(Deprecate)的收集器。

目标: 支持可预测的停顿时间模型——能够支持指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间大概率不超过N毫秒,这几乎已经是实时Java(RTSJ)的中软实时垃圾收集器特征了。

那具体要怎么做才能实现这个目标呢?

G1可以面向堆内存任何部分来组成回收集(Collection Set,一般简称CSet)进行回收,衡量标准不再是它属于哪个分代,而是哪块内存中存放的垃圾数量最多,回收收益最大,这就是G1收集器的Mixed GC模式。

G1不再坚持固定大小以及固定数量的分代区域划分,而是把连续的Java堆划分为多个大小相等的独立区域(Region),每一个Region都可以根据需要,扮演新生代的Eden空间、Survivor空间,或者老年代空间。收集器能够对扮演不同角色的Region采用不同的策略去处理,这样无论是新创建的对象还是已经存活了一段时间、熬过多次收集的旧对象都能获取很好的收集效果。

-XX:G1HeapRegionSize=size设定region大小,取值范围为1MB~32MB,且应为2的N次幂。

Region中还有一类特殊的Humongous区域,专门用来存储大对象。 G1认为只要大小超过了一个Region容量一半的对象即可判定为大对象。而对于那些超过了整个Region容量的超级大对象,将会被存放在N个连续的Humongous Region之中,G1的大多数行为都把Humongous Region作为老年代的一部分来进行看待。

虽然G1仍然保留新生代和老年代的概念,但新生代和老年代不再是固定的了,它们都是一系列区域(不需要连续)的动态集合。G1收集器之所以能建立可预测的停顿时间模型,是因为它将Region作为单次回收的最小单元,即每次收集到的内存空间都是Region大小的整数倍,这样可以有计划地避免在整个Java堆中进行全区域的垃圾收集。更具体的处理思路是让G1收集器去跟踪各个Region里面的垃圾堆积的“价值”大小,价值即回收所获得的空间大小以及回收所需时间的经验值,然后在后台维护一个优先级列表,每次根据用户设定允许的收集停顿时间,优先处理回收价值收益最大的那些Region,这也就是“Garbage First”名字的由来。这种使用Region划分内存空间,以及具有优先级的区域回收方式,保证了G1收集器在有限的时间内获取尽可能高的收集效率。

-XX:MaxGCPauseMillis指定用户期望的收集停顿时间,默认值是200毫秒,设置成一百或者两三百是较为合理的。

G1收集器Region分区示意图

解决的细节问题:

  1. 将Java堆分成多个独立Region后,Region里面存在的跨Region引用对象如何解决?
    它的每个Region都维护有自己的记忆集,这些记忆集会记录下别的Region 指向自己的指针,并标记这些指针分别在哪些卡页的范围之内。G1的记忆集在存储结构的本质上是一种哈希表,Key是别的Region的起始地址,Value是一个集合,里面存储的元素是卡表的索引号。这种“双向”的卡表结构(卡表是“我指向谁”,这种结构还记录了“谁指向我”)比原来的卡表实现起来更复杂,同时由于Region数量比传统收集器的分代数量明显要多得多,因此G1收集器要比其他的传统垃圾收集器有着更高的内存占用负担。根据经验,G1至少要耗费大约相当于Java堆容量10%至20%的额外内存来维持收集器工作。

  2. 在并发标记阶段如何保证收集线程与用户线程互不干扰地运行?
    CMS收集器采用增量更新算法实现,而G1 收集器则是通过原始快照算法来实现的。G1为每一个Region设计了两个名为TAMS(Top at Mark Start)的指针,把Region中的一部分空间划分出来用于并发回收过程中的新对象分配,并发回收时新分配的对象地址都必须要在这两个指针位置以上。G1收集器默认在这个地址以上的对象是被隐式标记过的,即默认它们是存活的,不纳入回收范围。与CMS中的“Concurrent Mode Failure”失败会导致Full GC类似,如果内存回收的速度赶不上内存分配的速度,G1收集器也要被迫冻结用户线程执行,导致Full GC而产生长时间“Stop The World”。

  3. 怎样建立起可靠的停顿预测模型?
    G1收集器的停顿预测模型是以衰减均值(Decaying Average)为理论基础来实现的,在垃圾收集过程中,G1收集器会记录每个Region的回收耗时、每个Region记忆集里的脏卡数量等各个可测量的步骤花费的成本,并分析得出平均值、标准偏差、置信度等统计信息。

G1收集器的运作过程大致可划分为以下四个步骤:

  • 初始标记:仅仅只是标记一下GC Roots能直接关联到的对象,并且修改TAMS指针的值,让下一阶段用户线程并发运行时,能正确地在可用的Region中分配新对象。这个阶段需要停顿线程,但耗时很短,而且是借用进行Minor GC的时候同步完成的,所以G1收集器在这个阶段实际并没有额外的停顿。
  • 并发标记:从GC Root开始对堆中对象进行可达性分析,递归扫描整个堆里的对象图,找出要回收的对象,这阶段耗时较长,但可与用户程序并发执行。当对象图扫描完成以后,还要重新处理SATB记录下的在并发时有引用变动的对象。
  • 最终标记:对用户线程做另一个短暂的暂停,用于处理并发阶段结束后仍遗留下来的最后那少量的SATB记录。
  • 筛选回收:负责更新Region的统计数据,对各个Region的回收价值和成本进行排序,根据用户所期望的停顿时间来制定回收计划,可以自由选择任意多个Region 构成回收集,然后把决定回收的那一部分Region的存活对象复制到空的Region中,再清理掉整个旧Region的全部空间。这里的操作涉及存活对象的移动,是必须暂停用户线程,由多条收集器线程并行完成的。

G1收集器除了并发标记外,其余阶段也是要完全暂停用户线程的,换言之,它并非纯粹地追求低延迟,官方给它设定的目标是在延迟可控的情况下获得尽可能高的吞吐量。

G1收集器运行示意图

G1收集器常会被拿来与CMS收集器互相比较,毕竟它们都非常关注停顿时间的控制:

  • 与CMS的“标记-清除”算法不同,G1从整体来看是基于“标记-整理”算法实现的收集器,但从局部(两个Region之间)上看又是基于“标记-复制”算法实现,无论如何,这两种算法都意味着G1运作期间不会产生内存空间碎片,垃圾收集完成之后能提供规整的可用内存。

  • 在用户程序运行过程中,G1无论是为了垃圾收集产生的内存占用(Footprint)还是程序运行时的额外执行负载(Overload)都要比CMS要高。

    • 就内存占用来说,虽然G1和CMS都使用卡表来处理跨代指针,但G1的卡表实现更为复杂,而且堆中每个Region,无论扮演的是新生代还是老年代角色,都必须有一份卡表,这导致G1的记忆集(和其他内存消耗)可能会占整个堆容量的20%乃至更多的内存空间;相比起来CMS的卡表就相当简单,只有唯一一份,而且只需要处理老年代到新生代的引用,反过来则不需要。

    • 在执行负载的角度上,同样由于两个收集器各自的细节实现特点导致了用户程序运行时的负载会有不同,譬如它们都使用到写屏障,CMS用写后屏障来更新维护卡表;而G1除了使用写后屏障来进行同样的卡表维护操作外,为了实现原始快照搜索(SATB)算法,还需要使用写前屏障来跟踪并发时的指针变化情况。相比起增量更新算法,原始快照搜索能够减少并发标记和重新标记阶段的消耗,避免CMS那样在最终标记阶段停顿时间过长的缺点,但是在用户程序运行过程中确实会产生由跟踪引用变化带来的额外负担。由于G1对写屏障的复杂操作要比CMS消耗更多的运算资源,所以CMS的写屏障实现是直接的同步操作,而G1就不得不将其实现为类似于消息队列的结构,把写前屏障和写后屏障中要做的事情都放到队列里,然后再异步处理。

低延迟垃圾收集器

衡量垃圾收集器的三项最重要的指标是:内存占用(Footprint)、吞吐量(Throughput)和延迟(Latency),在这三项指标里,延迟的重要性日益凸显,越发备受关注。其原因是随着计算机硬件的发展、性能的提升,我们越来越能容忍收集器多占用一点点内存,硬件的规格和性能越高,吞吐量也会越高,但对延迟反而会带来负面的效果。

各款收集器的并发情况

浅色阶段表示必须挂起用户线程,深色表示收集器线程与用户线程是并发工作的。可以看出,Shenandoah和ZGC,几乎整个工作过程全部都是并发的,只有初始标记、最终标记这些阶段有短暂的停顿,这部分停顿的时间基本上是固定的,与堆的容量、堆中对象的数量没有正比例关系。实际上,它们都可以在任意可管理的堆容量下,实现垃圾收集的停顿都不超过十毫秒。

Shenandoah收集器

Shenandoah是由RedHat领导开发的,受到了Oracle的抵制。Oracle明确拒绝在OracleJDK 12中支持Shenandoah收集器,Shenandoah是一款只有OpenJDK才会包含,而OracleJDK里反而不存在的收集器。

Shenandoah和G1有着相似的堆内存布局,在初始标记、并发标记等许多阶段的处理思路上都高度一致,甚至还直接共享了一部分实现代码。

不同之处:
+ 支持并发的整理算法
+ 默认不使用分代收集,不会有新生代Region和老年代Region
+ 摒弃了记忆集,改用名为 “连接矩阵” 的全局数据结构来记录跨Region的引用关系

连接矩阵可以简单理解为一张二维表格,如果Region N有对象指向Region M,就在表格的N行M列中打上一个标记,如图所示,如果Region 5中的对象Baz引用了Region 3的Foo,Foo又引用了Region 1的Bar,那连接矩阵中的5行3列、3行1列就应该被打上标记。在回收时通过这张表格就可以得出哪些Region之间产生了跨代引用。

深入理解java虚拟机第三版读书笔记05

Shenandoah收集器的工作过程大致可以划分为以下九个阶段:

  • 初始标记:与G1一样,首先标记与GC Roots直接关联的对象,这个阶段仍是“Stop The World”的,但停顿时间与堆大小无关,只与GC Roots的数量相关。
  • 并发标记:与G1一样,遍历对象图,标记出全部可达的对象,这个阶段是与用户线程一起并发的,时间长短取决于堆中存活对象的数量以及对象图的结构复杂程度。
  • 最终标记:与G1一样,处理剩余的SATB扫描,并在这个阶段统计出回收价值最高的Region,将这些Region构成一组回收集。最终标记阶段也会有一小段短暂的停顿。
  • 并发清理:这个阶段用于清理那些整个区域内连一个存活对象都没有找到的Region(这类Region被称为Immediate Garbage Region)。
  • 并发回收:并发回收阶段是Shenandoah与之前HotSpot中其他收集器的核心差异。在这个阶段,Shenandoah要把回收集里面的存活对象先复制一份到其他未被使用的Region之中。复制对象这件事情如果将用户线程冻结起来再做那是相当简单的,但如果两者必须要同时并发进行的话,就变得复杂起来了。其困难点是在移动对象的同时,用户线程仍然可能不停对被移动的对象进行读写访问,移动对象是一次性的行为,但移动之后整个内存中所有指向该对象的引用都还是旧对象的地址,这是很难一瞬间全部改变过来的。对于并发回收阶段遇到的这些困难,Shenandoah将会通过读屏障和被称为“Brooks Pointers”的转发指针来解决。并发回收阶段运行的时间长短取决于回收集的大小。
  • 初始引用更新:并发回收阶段复制对象结束后,还需要把堆中所有指向旧对象的引用修正到复制后的新地址,这个操作称为引用更新。引用更新的初始化阶段实际上并未做什么具体的处理,设立这个阶段只是为了建立一个线程集合点,确保所有并发回收阶段中进行的收集器线程都已完成分配给它们的对象移动任务而已。初始引用更新时间很短,会产生一个非常短暂的停顿。
  • 并发引用更新:真正开始进行引用更新操作,这个阶段是与用户线程一起并发的,时间长短取决于内存中涉及的引用数量的多少。并发引用更新与并发标记不同,它不再需要沿着对象图来搜索,只需要按照内存物理地址的顺序,线性地搜索出引用类型,把旧值改为新值即可。
  • 最终引用更新:解决了堆中的引用更新后,还要修正存在于GC Roots 中的引用。这个阶段是Shenandoah的最后一次停顿,停顿时间只与GC Roots的数量相关。
  • 并发清理:经过并发回收和引用更新之后,整个回收集中所有的Region已再无存活对象,这些Region都变成Immediate Garbage Regions了,最后再调用一次并发清理过程来回收这些Region的内存空间,供以后新对象分配使用。

原书还有关于转发指针原理的讲解,这里暂时略去。

ZGC收集器

ZGC收集器是一款基于Region内存布局的,(暂时)不设分代的,使用了读屏障、染色指针和内存多重映射等技术来实现可并发的标记-整理算法的,以低延迟为首要目标的一款垃圾收集器。

ZGC也采用基于Region的堆内存布局,但与它们不同的是,ZGC的Region(一些官方资料中将它称为Page或者ZPage)具有动态性——动态创建和销毁,以及动态的区域容量大小。在x64硬件平台下,ZGC的Region可以具有大、中、小三类容量:
+ 小型Region(Small Region):容量固定为2MB,用于放置小于256KB的小对象。
+ 中型Region(Medium Region):容量固定为32MB,用于放置大于等于256KB但小于4MB的对象。
+ 大型Region(Large Region):容量不固定,可以动态变化,但必须为2MB的整数倍,用于放置4MB或以上的大对象。每个大型Region中只会存放一个大对象,这也预示着虽然名字叫作“大型 Region”,但它的实际容量完全有可能小于中型Region,最小容量可低至4MB。大型Region在ZGC的实现中是不会被重分配(重分配是ZGC的一种处理动作,用于复制对象的收集器阶段)的,因为复制一个大对象的代价非常高昂。

深入理解java虚拟机第三版读书笔记05

接下来是ZGC的核心问题——并发整理算法的实现。Shenandoah使用转发指针和读屏障来实现并发整理,ZGC虽然同样用到了读屏障,但用的却是一条与Shenandoah完全不同,更加复杂精巧的解题思路——染色指针。

原书还有关于染色指针原理的讲解,这里暂时略去。

选择合适的垃圾收集器

Epsilon收集器

JDK11中,出现了一款以不能够进行垃圾收集为“卖点”的垃圾收集器。这里称这种“垃圾收集器”为“自动内存管理子系统”。一个垃圾收集器除了垃圾收集这个本职工作之外,它还要负责堆的管理与布局、对象的分配、与解释器的协作、与编译器的协作、与监控子系统协作等职责。

传统Java有着内存占用较大,在容器中启动时间长,即时编译需要缓慢优化等特点,这对大型应用来说并不是什么太大的问题,但对短时间、小规模的服务形式就有诸多不适。为了应对新的技术潮流,最近几个版本的JDK逐渐加入了提前编译、面向应用的类数据共享等支持。Epsilon也是有着类似的目标,如果读者的应用只要运行数分钟甚至数秒,只要Java虚拟机能正确分配内存,在堆耗尽之前就会退出,那显然运行负载极小、没有任何回收行为的Epsilon便是很恰当的选择。

收集器的权衡

如何选择一款适合自己应用的收集器呢?

  • 应用程序的主要关注点是什么?如果是数据分析、科学计算类的任务,目标是能尽快算出结果,那吞吐量就是主要关注点;如果是SLA应用,那停顿时间直接影响服务质量,严重的甚至会导致事务超时,这样延迟就是主要关注点;而如果是客户端应用或者嵌入式应用,那垃圾收集的内存占用则是不可忽视的。
  • 运行应用的基础设施如何?譬如硬件规格,要涉及的系统架构是x86-32/64、SPARC还是
    ARM/Aarch64;处理器的数量多少,分配内存的大小;选择的操作系统是Linux、Solaris还是Windows等。
  • 使用JDK的发行商是什么?版本号是多少?是ZingJDK/Zulu、OracleJDK、Open-JDK、OpenJ9抑或是其他公司的发行版?该JDK对应了《Java虚拟机规范》的哪个版本?

虚拟机及垃圾收集器日志

在JDK 9以前,HotSpot并没有提供统一的日志处理框架,虚拟机各个功能模块的日志开关分布在不同的参数上,日志级别、循环日志大小、输出格式、重定向等设置在不同功能上都要单独解决。直到JDK 9,这种混乱不堪的局面才终于消失,HotSpot所有功能的日志都收归到了“-Xlog”参数上,这个参数的能力也相应被极大拓展了。

-Xlog[:[selector][:[output][:[decorators][:output-options]]]]

这里不详细列举。

原创文章,作者:彭晨涛,如若转载,请注明出处:https://www.codetool.top/article/%e6%b7%b1%e5%85%a5%e7%90%86%e8%a7%a3java%e8%99%9a%e6%8b%9f%e6%9c%ba%e7%ac%ac%e4%b8%89%e7%89%88%e8%af%bb%e4%b9%a6%e7%ac%94%e8%ae%b005/

(0)
彭晨涛彭晨涛管理者
上一篇 2020年1月11日
下一篇 2020年1月12日

相关推荐

  • NIO、BIO模型对比实现文件的复制

    NIO特点 使用Channel代替Stream,是双向的 使用Selector监控多条Channel 可以在一个线程里处理多个Channel I/O Channel和Buffer …

    Java 2020年2月7日
    0180
  • 深入理解java虚拟机第三版读书笔记12

    以下是第十二章 Java内存模型与线程的内容 硬件的效率与一致性 基于高速缓存的存储交互很好地解决了处理器与内存速度之间的矛盾,但是也为计算机系统带来更高的复杂度,它引入了一个新的…

    2020年1月29日
    01540
  • HashSet源码分析

    Set家族一览: HashSet简介 Set是Collection三大接口其中之一,意为集合,且元素不能重复。Set接口中的方法和Collection中的方法完全一致,只是起到一个…

    2019年12月2日
    0200
  • 深入理解java虚拟机第三版读书笔记11

    以下是第十一章 后端编译与优化的内容 把Class文件转换成与本地基础设施(硬件指令集、操作系统)相关的二进制机器码可以视为整个编译过程的后端。 最近几年提前编译也开始兴起,我们在…

    2020年1月27日
    0280
  • Java8避免空指针异常Optional类的使用

    最近都是一天写一篇算法题解,好久没有写过博客了,不知道写啥了而且快到期末考试了。。 今天介绍一个Java8的特性:Optional类,这个类我平时也不咋用,今天来研究一下。 Opt…

    Java 2020年6月3日
    0660
  • Java基础查缺补漏01

    某些点会在不远的将来深挖。 >>是逻辑右移,>>>是算术右移 JDK6 可以使用Console.readPassword从控制台中读取密码,用户输入的过程中密码是不可见的。…

    2019年11月26日
    0590
  • JDK8新增高效原子累加器LongAdder源码分析

    很久以前写过CAS应用之JUC下的原子类,但是LongAdder这个类没有去看,只是给了一个其他博客的参考链接。今天就自己来分析一下。 AtomicLong的问题和LongAdde…

    2020年5月19日
    0730
  • 深入理解java虚拟机第三版读书笔记01

    做笔记之前的感言 谈到《深入理解java虚拟机》,在业内可太有名了,是国内的一位大神写的一本关于java虚拟机的畅销书,基本上对java稍有深入的程序员都听说过这本书。不过遗憾的是…

    2020年1月4日
    0270
  • Java线程池详解

    线程池就是享元模式和生产者消费者模式的应用 动手实现线程池 步骤1:自定义拒绝策略接口 @FunctionalInterface // 拒绝策略 interface RejectP…

    2020年2月3日
    0310
  • 日志门面SLF4J介绍和使用

    SLF4j概述 上篇文章写了日志门面介绍和JCL使用,作为一个曾经的主流日志门面技术,JCL终究因为设计时的产生问题所限,导致至今已没什么人使用,而一款优秀的日志门面技术SLF4j…

    2020年3月9日
    01340

发表回复

登录后才能评论