Java线程池详解

线程池就是享元模式和生产者消费者模式的应用

动手实现线程池

Java线程池详解

步骤1:自定义拒绝策略接口

@FunctionalInterface // 拒绝策略
interface RejectPolicy<T> {
    void reject(BlockingQueue<T> queue, T task);
}

步骤2:自定义任务队列

class BlockingQueue<T> {
    // 1. 任务队列
    private Deque<T> queue = new ArrayDeque<>();
    // 2. 锁
    private ReentrantLock lock = new ReentrantLock();
    // 3. 生产者条件变量
    private Condition fullWaitSet = lock.newCondition();
    // 4. 消费者条件变量
    private Condition emptyWaitSet = lock.newCondition();
    // 5. 容量
    private int capcity;
    public BlockingQueue(int capcity) {
        this.capcity = capcity;
    }
    // 带超时阻塞获取
    public T poll(long timeout, TimeUnit unit) {
        lock.lock();
        try {
            // 将 timeout 统一转换为 纳秒
            long nanos = unit.toNanos(timeout);
            while (queue.isEmpty()) {
                try {
                    // 返回值是剩余时间
                    if (nanos <= 0) {
                        return null;
                    }
                    nanos = emptyWaitSet.awaitNanos(nanos);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            T t = queue.removeFirst();
            fullWaitSet.signal();
            return t;
        } finally {
            lock.unlock();
        }
    }
    // 阻塞获取
    public T take() {
        lock.lock();
        try {
            while (queue.isEmpty()) {
                try {
                    emptyWaitSet.await();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            T t = queue.removeFirst();
            fullWaitSet.signal();
            return t;
        } finally {
            lock.unlock();
        }
    }
    // 阻塞添加
    public void put(T task) {
        lock.lock();
        try {
            while (queue.size() == capcity) {
                try {
                    log.debug("等待加入任务队列 {} ...", task);
                    fullWaitSet.await();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            log.debug("加入任务队列 {}", task);
            queue.addLast(task);
            emptyWaitSet.signal();
        } finally {
            lock.unlock();
        }
    }
    // 带超时时间阻塞添加
    public boolean offer(T task, long timeout, TimeUnit timeUnit) {
        lock.lock();
        try {
            long nanos = timeUnit.toNanos(timeout);
            while (queue.size() == capcity) {
                try {
                    if(nanos <= 0) {
                        return false;
                    }
                    log.debug("等待加入任务队列 {} ...", task);
                    nanos = fullWaitSet.awaitNanos(nanos);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            log.debug("加入任务队列 {}", task);
            queue.addLast(task);
            emptyWaitSet.signal();
            return true;
        } finally {
            lock.unlock();
        }
    }
    public int size() {
        lock.lock();
        try {
            return queue.size();
        } finally {
            lock.unlock();
        }
    }
    public void tryPut(RejectPolicy<T> rejectPolicy, T task) {
        lock.lock();
        try {
            // 判断队列是否满
            if(queue.size() == capcity) {
                rejectPolicy.reject(this, task);
            } else { // 有空闲
                log.debug("加入任务队列 {}", task);
                queue.addLast(task);
                emptyWaitSet.signal();
            }
        } finally {
            lock.unlock();
        }
    }
}

步骤3:自定义线程池

class ThreadPool {
    // 任务队列
    private BlockingQueue<Runnable> taskQueue;
    // 线程集合
    private HashSet<Worker> workers = new HashSet<>();
    // 核心线程数
    private int coreSize;
    // 获取任务时的超时时间
    private long timeout;
    private TimeUnit timeUnit;
    private RejectPolicy<Runnable> rejectPolicy;
    // 执行任务
    public void execute(Runnable task) {
        // 当任务数没有超过 coreSize 时,直接交给 worker 对象执行
        // 如果任务数超过 coreSize 时,加入任务队列暂存
        synchronized (workers) {
            if(workers.size() < coreSize) {
                Worker worker = new Worker(task);
                log.debug("新增 worker{}, {}", worker, task);
                workers.add(worker);
                worker.start();
            } else {
                // taskQueue.put(task);
                // 1) 死等
                // 2) 带超时等待
                // 3) 让调用者放弃任务执行
                // 4) 让调用者抛出异常
                // 5) 让调用者自己执行任务
                taskQueue.tryPut(rejectPolicy, task);
            }
        }
    }
    public ThreadPool(int coreSize, long timeout, TimeUnit timeUnit, int queueCapcity,
    RejectPolicy<Runnable> rejectPolicy) {
        this.coreSize = coreSize;
        this.timeout = timeout;
        this.timeUnit = timeUnit;
        this.taskQueue = new BlockingQueue<>(queueCapcity);
        this.rejectPolicy = rejectPolicy;
    }
    class Worker extends Thread{
        private Runnable task;
        public Worker(Runnable task) {
        this.task = task;
        }
        @Override
        public void run() {
            // 执行任务
            // 1) 当 task 不为空,执行任务
            // 2) 当 task 执行完毕,再接着从任务队列获取任务并执行
            // while(task != null || (task = taskQueue.take()) != null) {
            while(task != null || (task = taskQueue.poll(timeout, timeUnit)) != null) {
                try {
                    log.debug("正在执行...{}", task);
                    task.run();
                } catch (Exception e) {
                    e.printStackTrace();
                } finally {
                    task = null;
                }
            }
            synchronized (workers) {
                log.debug("worker 被移除{}", this);
                workers.remove(this);
            }
        }
    }
}

ThreadPoolExecutor

Java线程池详解

线程池状态

ThreadPoolExecutor 使用 int 的高 3 位来表示线程池状态,低 29 位表示线程数量

状态名 高3位 接收新任务 处理阻塞队列任务 说明
RUNNING 111 Y Y
SHUTDOWN 000 N Y 不会接收新任务,但会处理阻塞队列剩余任务
STOP 001 N N 会中断正在执行的任务,并抛弃阻塞队列任务
TIDYING 010 任务全执行完毕,活动线程为 0 即将进入终结
TERMINATED 011 终结状态

从数字上比较,TERMINATED > TIDYING > STOP > SHUTDOWN > RUNNING

这些信息存储在一个原子变量 ctl 中,目的是将线程池状态与线程个数合二为一,这样就可以用一次 cas 原子操作进行赋值

// c 为旧值, ctlOf 返回结果为新值
ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))));

// rs 为高 3 位代表线程池状态, wc 为低 29 位代表线程个数,ctl 是合并它们
private static int ctlOf(int rs, int wc) { return rs | wc; }

构造方法

public ThreadPoolExecutor(
    int corePoolSize,
    int maximumPoolSize,
    long keepAliveTime,
    TimeUnit unit,
    BlockingQueue<Runnable> workQueue,
    ThreadFactory threadFactory,
    RejectedExecutionHandler handler
)
  • corePoolSize 核心线程数目 (最多保留的线程数)
  • maximumPoolSize 最大线程数目
  • keepAliveTime 生存时间 - 针对救急线程
  • unit 时间单位 - 针对救急线程
  • workQueue 阻塞队列
  • threadFactory 线程工厂 - 可以为线程创建时起个好名字
  • handler 拒绝策略

工作方式:

  • 线程池中刚开始没有线程,当一个任务提交给线程池后,线程池会创建一个新线程来执行任务。
  • 当线程数达到 corePoolSize 并没有线程空闲,这时再加入任务,新加的任务会被加入workQueue 队列排队,直到有空闲的线程。
  • 如果队列选择了有界队列,那么任务超过了队列大小时,会创建 maximumPoolSize - corePoolSize 数目的线程来救急。
  • 如果线程到达 maximumPoolSize 仍然有新任务这时会执行拒绝策略。拒绝策略 jdk 提供了 4 种实现,其它著名框架也提供了实现
    • AbortPolicy 让调用者抛出 RejectedExecutionException 异常,这是默认策略
    • CallerRunsPolicy 让调用者运行任务
    • DiscardPolicy 放弃本次任务
    • DiscardOldestPolicy 放弃队列中最早的任务,本任务取而代之
    • Dubbo 的实现,在抛出 RejectedExecutionException 异常之前会记录日志,并 dump 线程栈信息,方便定位问题

    • Netty 的实现,是创建一个新线程来执行任务
    • ActiveMQ 的实现,带超时等待(60s)尝试放入队列,类似我们之前自定义的拒绝策略
    • PinPoint 的实现,它使用了一个拒绝策略链,会逐一尝试策略链中每种拒绝策略
  • 当高峰过去后,超过 corePoolSize 的救急线程如果一段时间没有任务做,需要结束节省资源,这个时间由 keepAliveTimeunit 来控制。

BlockingQueue的各种实现类:(参考链接)

  • ArrayBlockingQueue:基于数组的阻塞队列实现,在ArrayBlockingQueue内部,维护了一个定长的数组,以便缓存队列中的数据对象,其内部没实现读写分离,也就意味着生产和消费者不能完全并行。长度是需要定义的,可以指定先进先出或者先进后出,因为长度是需要定义的,所以也叫有界队列,在很多场合非常适合使用。
  • LinkedBlockingQueue:基于链表的阻塞队列,同ArrayBlockingQueue类似,其内部也维持着一个数据缓冲队列(该队列由一个链表构成),LinkedBlockingQueue之所以能够高效地处理并发数据,是因为其内部实现采用分离锁(读写分离两个锁),从而实现生产者和消费者操作完全并行运行。需要注意一下,它是一个无界队列。

  • SynchronousQueue:一种没有缓冲的队列,生产者产生的数据直接会被消费者获取并且立刻消费。

  • PriorityBlockingQueue:基于优先级别的阻塞队列(优先级的判断通过构造函数传入的Compator对象来决定,也就是说传入队列的对象必须实现Comparable接口),在实现PriorityBlockingQueue时,内部控制线程同步的锁采用的是公平锁,需要注意的是它也是一个无界的队列。

  • DelayQueue:带有延迟时间的Queue,其中的元素只有当其指定的延迟时间到了,才能够从队列中获取到该元素。DelayQueue中的元素必须先实现Delayed接口,DelayQueue是一个没有大小限制的队列,应用场景很多,比如对缓存超时的数据进行移除、任务超时处理、空闲连接的关闭等等。

根据这个构造方法,JDK Executors 类中提供了众多工厂方法来创建各种用途的线程池。

newFixedThreadPool固定大小线程池

public static ExecutorService newFixedThreadPool(int nThreads) {
    return new ThreadPoolExecutor(nThreads, nThreads,
    0L, TimeUnit.MILLISECONDS,
    new LinkedBlockingQueue<Runnable>());
}

特点

  • 核心线程数 最大线程数(没有救急线程被创建),因此也无需超时时间
  • 阻塞队列是无界的,可以放任意数量的任务

评价 适用于任务量已知,相对耗时的任务

newCachedThreadPool带缓冲线程池

public static ExecutorService newCachedThreadPool() {
    return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
    60L, TimeUnit.SECONDS,
    new SynchronousQueue<Runnable>());
}

特点
+ 核心线程数是 0, 最大线程数是 Integer.MAX_VALUE,救急线程的空闲生存时间是 60s,意味着
- 全部都是救急线程(60s 后可以回收)
- 救急线程可以无限创建
+ 队列采用了 SynchronousQueue 实现特点是,它没有容量,没有线程来取是放不进去的(一手交钱、一手交货)

评价 整个线程池表现为线程数会根据任务量不断增长,没有上限,当任务执行完毕,空闲 1分钟后释放线程。 适合任务数比较密集,但每个任务执行时间较短的情况。

newSingleThreadExecutor单线程线程池

public static ExecutorService newSingleThreadExecutor() {
    return new FinalizableDelegatedExecutorService
    (new ThreadPoolExecutor(1, 1,
    0L, TimeUnit.MILLISECONDS,
    new LinkedBlockingQueue<Runnable>()));
}

使用场景:
希望多个任务排队执行。线程数固定为 1,任务数多于 1 时,会放入无界队列排队。任务执行完毕,这唯一的线程也不会被释放。

区别:
+ 自己创建一个单线程串行执行任务,如果任务执行失败而终止那么没有任何补救措施,而线程池还会新建一个线程,保证池的正常工作
+ Executors.newSingleThreadExecutor() 线程个数始终为1,不能修改
- FinalizableDelegatedExecutorService 应用的是装饰器模式,只对外暴露了 ExecutorService 接口,因此不能调用 ThreadPoolExecutor 中特有的方法
+ Executors.newFixedThreadPool(1) 初始时为1,以后还可以修改
- 对外暴露的是 ThreadPoolExecutor 对象,可以强转后调用 setCorePoolSize 等方法进行修改

提交任务

// 执行任务
void execute(Runnable command);

// 提交任务 task,用返回值 Future 获得任务执行结果
<T> Future<T> submit(Callable<T> task);

Future<Integer> future1 = pool.submit(() -> {
    return 1;
});

// 提交 tasks 中所有任务
<T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) throws InterruptedException;

// 提交 tasks 中所有任务,带超时时间,丢弃超出时间未运行的线程,返回的List中的结果按线程顺序排序
<T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
    long timeout, TimeUnit unit)
    throws InterruptedException;

// 提交 tasks 中所有任务,哪个任务先成功执行完毕,返回此任务执行结果,其它任务取消
<T> T invokeAny(Collection<? extends Callable<T>> tasks)
    throws InterruptedException, ExecutionException;

// 提交 tasks 中所有任务,哪个任务先成功执行完毕,返回此任务执行结果,其它任务取消,带超时时间
<T> T invokeAny(Collection<? extends Callable<T>> tasks,
    long timeout, TimeUnit unit)
    throws InterruptedException, ExecutionException, TimeoutException;

关闭线程池

shutdown

/*
线程池状态变为 SHUTDOWN
- 不会接收新任务
- 但已提交任务会执行完
- 此方法不会阻塞调用线程的执行
*/
void shutdown();
public void shutdown() {
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        checkShutdownAccess();
        // 修改线程池状态
        advanceRunState(SHUTDOWN);
        // 仅会打断空闲线程
        interruptIdleWorkers();
        onShutdown(); // 扩展点 ScheduledThreadPoolExecutor
    } finally {
        mainLock.unlock();
    }
    // 尝试终结(没有运行的线程可以立刻终结,如果还有运行的线程也不会等)
    tryTerminate();
}

shutdownNow

/*
线程池状态变为 STOP
- 不会接收新任务
- 会将队列中的任务返回
- 并用 interrupt 的方式中断正在执行的任务
*/
List<Runnable> shutdownNow();
public List<Runnable> shutdownNow() {
    List<Runnable> tasks;
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        checkShutdownAccess();
        // 修改线程池状态
        advanceRunState(STOP);
        // 打断所有线程
        interruptWorkers();
        // 获取队列中剩余任务
        tasks = drainQueue();
    } finally {
        mainLock.unlock();
    }
    // 尝试终结
    tryTerminate();
    return tasks;
}

其它方法

// 不在 RUNNING 状态的线程池,此方法就返回 true
boolean isShutdown();

// 线程池状态是否是 TERMINATED
boolean isTerminated();

// 调用 shutdown 后,由于调用线程并不会等待所有任务运行结束,因此如果它想在线程池 TERMINATED 后做些事
情,可以利用此方法等待
boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException;

线程池多大合适

CPU 密集型运算

通常采用 cpu 核数 + 1 能够实现最优的 CPU 利用率,+1 是保证当线程由于页缺失故障(操作系统)或其它原因导致暂停时,额外的这个线程就能顶上去,保证 CPU 时钟周期不被浪费

I/O 密集型运算

CPU 不总是处于繁忙状态,例如,当你执行业务计算时,这时候会使用 CPU 资源,但当你执行 I/O 操作时、远程RPC 调用时,包括进行数据库操作时,这时候 CPU 就闲下来了,你可以利用多线程提高它的利用率。

经验公式如下

线程数 = 核数 * 期望 CPU 利用率 * 总时间(CPU计算时间+等待时间) / CPU 计算时间

例如 4 核 CPU 计算时间是 50% ,其它等待时间是 50%,期望 cpu 被 100% 利用,套用公式

4 * 100% * 100% / 50% = 8

例如 4 核 CPU 计算时间是 10% ,其它等待时间是 90%,期望 cpu 被 100% 利用,套用公式

4 * 100% * 100% / 10% = 40

任务调度线程池

使用方法

在『任务调度线程池』功能加入之前,可以使用 java.util.Timer 来实现定时功能,Timer 的优点在于简单易用,但由于所有任务都是由同一个线程来调度,因此所有任务都是串行执行的,同一时间只能有一个任务在执行,前一个任务的延迟或异常都将会影响到之后的任务。

public static void main(String[] args) {
    Timer timer = new Timer();
    TimerTask task1 = new TimerTask() {
        @Override
        public void run() {
            log.debug("task 1");
            sleep(2);
        }
    };
    TimerTask task2 = new TimerTask() {
        @Override
        public void run() {
            log.debug("task 2");
        }
    };
    // 使用 timer 添加两个任务,希望它们都在 1s 后执行
    // 但由于 timer 内只有一个线程来顺序执行队列中的任务,因此『任务1』的延时,影响了『任务2』的执行
    timer.schedule(task1, 1000);
    timer.schedule(task2, 1000);
}

使用 ScheduledExecutorService 改写:

// 构造方法只是设置corePoolSize
ScheduledExecutorService executor = Executors.newScheduledThreadPool(2);
// 添加两个任务,希望它们都在 1s 后执行
executor.schedule(() -> {
    System.out.println("任务1,执行时间:" + new Date());
    try { Thread.sleep(2000); } catch (InterruptedException e) { }
}, 1000, TimeUnit.MILLISECONDS);
executor.schedule(() -> {
    System.out.println("任务2,执行时间:" + new Date());
}, 1000, TimeUnit.MILLISECONDS);

构造方法源码:

public ScheduledThreadPoolExecutor(int corePoolSize) {
    super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,
            new DelayedWorkQueue());
}

方法:

/* 
 * 每间隔一段时间提交执行一次任务
 * command 待执行的任务
 * initialDelay 第一次执行任务的延迟
 * period 每次执行任务之间的延迟
 * unit 时间单位
 */
executor.scheduleAtFixedRate(Runnable command,long initialDelay,long period,TimeUnit unit)

/*
 * 按一定间隔在上一次任务执行结束之后提交执行下一次任务
 */
executor.scheduleWithFixedDelay(Runnable command,long initialDelay,long period,TimeUnit unit)

应用

让每周四 18:00:00 定时执行任务

// 获得当前时间
LocalDateTime now = LocalDateTime.now();
// 获取本周四 18:00:00.000
LocalDateTime thursday =
now.with(DayOfWeek.THURSDAY).withHour(18).withMinute(0).withSecond(0).withNano(0);
// 如果当前时间已经超过 本周四 18:00:00.000, 那么找下周四 18:00:00.000
if(now.compareTo(thursday) >= 0) {
    thursday = thursday.plusWeeks(1);
}

// 计算时间差,即延时执行时间
long initialDelay = Duration.between(now, thursday).toMillis();
// 计算间隔时间,即 1 周的毫秒值
long oneWeek = 7 * 24 * 3600 * 1000;

ScheduledExecutorService executor = Executors.newScheduledThreadPool(2);
System.out.println("开始时间:" + new Date());
executor.scheduleAtFixedRate(() -> {
    System.out.println("执行时间:" + new Date());
}, initialDelay, oneWeek, TimeUnit.MILLISECONDS);

处理线程中的异常

应该在线程内部捕获并处理异常,否则其他线程和主线程完全感知不到某个线程抛出的异常。

使用线程池的submit方法时,如果callable中发生异常,返回Future.get()会出现异常信息。

fork/join

概念

Fork/Join 是 JDK 1.7 加入的新的线程池实现,它体现的是一种分治思想,适用于能够进行任务拆分的 cpu 密集型运算

所谓的任务拆分,是将一个大任务拆分为算法上相同的小任务,直至不能拆分可以直接求解。跟递归相关的一些计算,如归并排序、斐波那契数列、都可以用分治思想进行求解

Fork/Join 在分治的基础上加入了多线程,可以把每个任务的分解和合并交给不同的线程来完成,进一步提升了运算效率

Fork/Join 默认会创建与 cpu 核心数大小相同的线程池

使用

提交给 Fork/Join 线程池的任务需要继承 RecursiveTask(有返回值)或 RecursiveAction(没有返回值),例如下面定义了一个对 1~n 之间的整数求和的任务

class AddTask1 extends RecursiveTask<Integer> {
    int n;
    public AddTask1(int n) {
        this.n = n;
    }
    @Override
    public String toString() {
        return "{" + n + '}';
    }
    @Override
    protected Integer compute() {
        // 如果 n 已经为 1,可以求得结果了
        if (n == 1) {
            log.debug("join() {}", n);
            return n;
        }

        // 将任务进行拆分(fork)
        AddTask1 t1 = new AddTask1(n - 1);
        t1.fork();
        log.debug("fork() {} + {}", n, t1);

        // 合并(join)结果
        int result = n + t1.join();
        log.debug("join() {} + {} = {}", n, t1, result);
        return result;
    }
}

然后提交给 ForkJoinPool 来执行

public static void main(String[] args) {
    ForkJoinPool pool = new ForkJoinPool(4);
    System.out.println(pool.invoke(new AddTask1(5)));
}

原创文章,作者:彭晨涛,如若转载,请注明出处:https://www.codetool.top/article/java%e7%ba%bf%e7%a8%8b%e6%b1%a0%e8%af%a6%e8%a7%a3/

发表评论

电子邮件地址不会被公开。